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Abstract 

In the current review, the most pessimistic events of the globe in history are addressed when we present severe impacts caused by storm surges. 
During previous decades, great progresses in storm surge modeling have been made. As a result, people have developed a number of numerical 
software such as SPLASH, SLOSH etc. and implemented routine operational forecast by virtue of powerful supercomputers with the help of 
meteorological satellites and sensors as verification tools. However, storm surge as a killer from the sea is still threatening human being and 
exerting enormous impacts on human society due to economic growth, population increase and fast urbanization. To mitigate the effects of storm 
surge hazards, integrated research on disaster risk (IRDR) as an ICSU program is put on agenda. The most challenging issues concerned such as 
abrupt variation in TC’s track and intensity, comprehensive study on the consequences of storm surge and the effects of climate change on risk 
estimation are emphasized.  In addition, it is of paramount importance for coastal developing countries to set up forecast and warning system and 
reduce vulnerability of affected areas. 
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1. Introduction 

Storm surge, an extraordinary sea surface elevation induced by atmospheric disturbance (wind and atmospheric 
pressure), is regarded as a most catastrophic natural disaster. According to long term statistical analysis, total death 
toll amounted to 1.5 million and property losses exceeded hundred billions USD globally since 18751. They could 
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1. Introduction 

To assess storm surges, there are two conventional types of physics-based numerical models: a decoupled model 
of storm surge, and a coupled model of surge, wave and tide. In the last three decades, coupled models have been 
paid attention to, especially focusing on the interaction of surge, wave and tide. Several studies have introduced 
wind stress as a function of waves (e.g., Janssen1,2). Since then, a number of studies that examined wave-induced 
stress that is directly obtained in coupled models of surge and wave showed the significant improvements of the 
model results while comparing with observation data (e.g., Funakoshi, Hagen, and Bacopoulos3; Kim, Yasuda, and 
Mase4; Zhang and Li5). Wave setup driven by a force of the divergence of radiation stress in the nearshore has also 
been studied with coupled models of surge and wave (e.g., Bertin et al.6; Kim, Yasuda, and Mase7; Mastenbroek, 
Burgers, and Janssen8). It was found that the wave setup induced by the force of the radiation stress is substantial in 
the peak surge level during Typhoon Anita 1970 (e.g., Kim, Yasuda, and Mase7). It was investigated that the tide-
surge interaction is not negligible when estimating local surge levels (e.g., Chen, Wang, and Zhao9; Choi, Eum, and 
Woo10; Kim, Yasuda, and Mase4). Besides the interaction of tide, wave and surge, topographic characteristics (e.g., 
bed slope) also plays an important role in the increase or decrease of wave setup, runup and wind driven surge (e.g., 
Dietrich et al.11; Kennedy et al.12). 

For several decades, climate change impact studies have focused on storm surge studies in Vietnam (e.g., Ninh13; 
Sao14; Thuy15). Conventional ways of two (or three) dimensional nonlinear shallow water equations have been used. 
In other words, in those studies other factors such as tides and waves were not taken into account in the storm surge 
model. Recently, the effect of waves on storm surge has been investigated in Vietnam. Hien et al.16 showed that the 
wave setup induced by the force of the divergence of radiation stress is significant in the storm surge on the coast of 
Haiphong using empirical formula. Thuy et al.17 found that the Typhoon Kalmaegi (2014) surge was significantly 
influenced by the waves on the Haiphong coast in Vietnam, obtained from numerical simulations using a coupled 
model of surge, wave and tide.  

In the present study, the primary factors affecting storm surge on the north coast of Vietnam are quantitatively 
investigated using a coupled model of surge, wave and tide. In the study area, the tidal cycles are diurnal and the 
maximum tidal range is up to 3.6 m. Therefore, the tide is also taken into account in the simulation. The study 
highlights that coupling processes between surge and wave are critical to the prediction of storm surge on the north 
coast of Vietnam and only using a coupled model of surge, wave and tide (e.g., SuWAT developed by Kim et al. 4) 
is able to accurately estimate storm surges. A series of storm surge simulations are conducted for Frankie (1996) and 
Washi (2005) that consider the interaction of surge, wave and tide.  

2. Method 

To analyze the storm surge in the study area, the coupled model of surge, wave and tide (called SuWAT), 
developed by Kim, Yasuda, and Mase4 was used. SuWAT is capable of doing parallel computations for an arbitrary 
number of domains using the Message Passing Interface (MPI). In the present study, three modules of surge, wave 
and tide are integrated into SuWAT as shown in Figure 1 that reveals the information of the flow among the 
modules and the domains. The tidal module provides only boundary conditions to the surge modules in the 
outermost domain. Coupling parameters include open boundary values, internal exchange among modules and 
domains in a machine. The calculations are sequentially carried out from the higher level domain to the lower level; 
the rest of the lower level domains wait for the completion of the higher level domain at a time step. This modeling 
system has been implemented and verified in other studies (e.g., Kim, Yasuda, and Mase7; Kim et al.18,19; Mase et 
al.20). 

2.1. Surge module 

     The surge module solves the depth averaged nonlinear shallow water equations using the staggered Arakawa C 
grid in space and the leap frog scheme in time. The explicit finite difference scheme is used with the upwind method: 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.piutam.2017.09.013&domain=pdf
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1. Introduction 

To assess storm surges, there are two conventional types of physics-based numerical models: a decoupled model 
of storm surge, and a coupled model of surge, wave and tide. In the last three decades, coupled models have been 
paid attention to, especially focusing on the interaction of surge, wave and tide. Several studies have introduced 
wind stress as a function of waves (e.g., Janssen1,2). Since then, a number of studies that examined wave-induced 
stress that is directly obtained in coupled models of surge and wave showed the significant improvements of the 
model results while comparing with observation data (e.g., Funakoshi, Hagen, and Bacopoulos3; Kim, Yasuda, and 
Mase4; Zhang and Li5). Wave setup driven by a force of the divergence of radiation stress in the nearshore has also 
been studied with coupled models of surge and wave (e.g., Bertin et al.6; Kim, Yasuda, and Mase7; Mastenbroek, 
Burgers, and Janssen8). It was found that the wave setup induced by the force of the radiation stress is substantial in 
the peak surge level during Typhoon Anita 1970 (e.g., Kim, Yasuda, and Mase7). It was investigated that the tide-
surge interaction is not negligible when estimating local surge levels (e.g., Chen, Wang, and Zhao9; Choi, Eum, and 
Woo10; Kim, Yasuda, and Mase4). Besides the interaction of tide, wave and surge, topographic characteristics (e.g., 
bed slope) also plays an important role in the increase or decrease of wave setup, runup and wind driven surge (e.g., 
Dietrich et al.11; Kennedy et al.12). 

For several decades, climate change impact studies have focused on storm surge studies in Vietnam (e.g., Ninh13; 
Sao14; Thuy15). Conventional ways of two (or three) dimensional nonlinear shallow water equations have been used. 
In other words, in those studies other factors such as tides and waves were not taken into account in the storm surge 
model. Recently, the effect of waves on storm surge has been investigated in Vietnam. Hien et al.16 showed that the 
wave setup induced by the force of the divergence of radiation stress is significant in the storm surge on the coast of 
Haiphong using empirical formula. Thuy et al.17 found that the Typhoon Kalmaegi (2014) surge was significantly 
influenced by the waves on the Haiphong coast in Vietnam, obtained from numerical simulations using a coupled 
model of surge, wave and tide.  

In the present study, the primary factors affecting storm surge on the north coast of Vietnam are quantitatively 
investigated using a coupled model of surge, wave and tide. In the study area, the tidal cycles are diurnal and the 
maximum tidal range is up to 3.6 m. Therefore, the tide is also taken into account in the simulation. The study 
highlights that coupling processes between surge and wave are critical to the prediction of storm surge on the north 
coast of Vietnam and only using a coupled model of surge, wave and tide (e.g., SuWAT developed by Kim et al. 4) 
is able to accurately estimate storm surges. A series of storm surge simulations are conducted for Frankie (1996) and 
Washi (2005) that consider the interaction of surge, wave and tide.  

2. Method 

To analyze the storm surge in the study area, the coupled model of surge, wave and tide (called SuWAT), 
developed by Kim, Yasuda, and Mase4 was used. SuWAT is capable of doing parallel computations for an arbitrary 
number of domains using the Message Passing Interface (MPI). In the present study, three modules of surge, wave 
and tide are integrated into SuWAT as shown in Figure 1 that reveals the information of the flow among the 
modules and the domains. The tidal module provides only boundary conditions to the surge modules in the 
outermost domain. Coupling parameters include open boundary values, internal exchange among modules and 
domains in a machine. The calculations are sequentially carried out from the higher level domain to the lower level; 
the rest of the lower level domains wait for the completion of the higher level domain at a time step. This modeling 
system has been implemented and verified in other studies (e.g., Kim, Yasuda, and Mase7; Kim et al.18,19; Mase et 
al.20). 

2.1. Surge module 

     The surge module solves the depth averaged nonlinear shallow water equations using the staggered Arakawa C 
grid in space and the leap frog scheme in time. The explicit finite difference scheme is used with the upwind method: 
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where η is the sea surface level, M and N are the components of depth-integrated velocity in the horizontal and 
vertical directions, P is the atmospheric pressure, f is the Coriolis parameter, g is the gravitational acceleration, d is 
the total water depth (η + h), Ah is the horizontal eddy diffusions, w is the density of water, and Fx and Fy represent 
the components of wave force which correspond to the gradients of wave-induced radiation stress:  
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where C and Cg are the wave velocity and the group velocity,  and  are the angular frequency and the wave 
direction, and E is the energy, density, and spectrum respectively. A conventional quadratic law is applied to the sea 
surface and bottom boundary layers. The bottom stress is computed by: 
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In which	���	is the depth-integrated velocity vector, and n is the Manning number (0.025) in all the domains, as 
determined by Chien21. The wind stress is usually estimated by the following equation: 
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where a is the density of air, CD is the drag coefficient and ������ is the wind speed at 10 m height. In a series of storm 
surge simulations, two CDs are used. One is the conventional CD (Honda and Mitsuyasu22):    
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The other is the wave dependent CD (Janssen 1,2). In SuWAT, Mastenbroek, Burgers, and Janssen's8 iteration for 
Janssen's formulation of the exponential wave growth term in wave modules, (given in the section of Wave module), 
is used to estimate the wave dependent CD. Following his assumption, waves influence the boundary layer: = w+t, 
where w is the wave-induced stress, the turbulent stress and  the total stress. The wind profile is given by: 
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where U(z) is the wind speed at height, ze is the effective roughness, z0 is the roughness length, z is the height and = 
0.4 is the von Kármán constant. The turbulent stress is parameterized with a mixing-length hypothesis: 
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where a is the air density. If the wind profile (12) is differentiated, squared and compared with the form (13), an 
expression for ze for z = z0 (Mastenbroek, Burgers, and Janssen8) can be found: 
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where:w = w(z0). To parameterize the roughness length z0, Janssen assumes that a Charnock-like relation �� ����∗�/g is valid with the values for �∗ � ��/��  and ��   (=0.0081), the Charnock parameter. With the effective 
roughness (ze), the wave dependent CD is finally obtained by Eq. (15): 
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In this study, Eq. (15) is used to estimate the wind stress in Eq. (10) instead of the conventional CD in Equation 
(11). The effect of levelling off at wind speeds of 22-33 m/s on CD is not taken into account (Donelan et al 23; Kim 
et al19). 

The solid boundary condition is adopted at land boundaries for no inundation conditions. The radiation condition 
along open boundaries is given by following Flather’s method24 in all the domains. The current and sea surface level 
in the coarse grid domain are transferred to the nested open boundaries in the fine grid domain at each time step of 4 
s. The time step is 4 s for the surge model. 

2.2. Tidal module 

The astronomical tide in SuWAT is imposed by a global ocean tide model (Matsumoto, Takanezawa, and Ooe25) 
that predicts tidal levels for sixteen constituents of M2, S2, K1, O1, N2, P1, K2, Q1, M1, J1, OO1, 2N2, Mu2, Nu2, 
L2 and T2. At every time step, the tidal level is imposed on open boundaries in only the outermost domain. Along 
the open boundary, the sea surface level is given by: 
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where ����� is the tidal level and ������ is the surge level. 

2.3. Wave module 

The wave model of Simulating WAvesNearshore (SWAN; Booij, Ris, and Holthuijsen26) integrated in the wave 
module solves the spectral action balance equation to estimate a wave spectrum (Booij, Ris, and Holthuijsen26). The 
wave in SuWAT is estimated by time varying currents and sea surface levels calculated from the surge module. The 
updated parameters of the wave dependent drag and the radiation stress in the wave module are returned to the surge 
module to calculate the current and sea surface level. The SWAN version 40.41 has been integrated into SuWAT as 
the wave module (Kim, Yasuda, and Mase4).  

As done in Kim et al.19, in the present simulation, the default values of parameters for the physics are used: 
Cavaleri and Malanotte-Rizzoli27 for linear wave growth, Janssen1,2 for exponential wave growth, Janssen2 for 
white-capping, Hasselmann et al.28 for quadruplet interaction, Battjes and Janssen29 for depth-induced breaking and 
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3. Results 

To examine a critical factor to the generation of storm surge in the north coast of Vietnam, the representative 
historical typhoons of Frankie (1996) and Washi (2005) were selected. These typhoon tracks are provided in Fig. 3. 
Typhoon Frankie landfalled at the low tide while Typhoon Washi landfalled at high tide as the time profile of total 
water level observation, tide predict and storm surge at Hondau station in both typhoon cases showed in Fig. 4. 

 
(a) 

 
(b) 

Fig.4. Time serial of total water level (observation), predicted tide and storm surge at Hondau station during Typhoon Frankie (a) and Washi (b). 

 

3.1. Impact of the tide on the storm surge 

In order to investigate how the tide influences the storm surge in the study area, a series of simulations were 
conducted using SuWAT that the surge and tide interaction was taken into account to calculate the Typhoon Frankie 
and Washi surge. In the storm surge simulation, the conventional CD (Honda and Mitsuyasu22) was used to estimate 
the wind stress. First, the surge simulation was carried out with the tide. Then, only the tide simulation was 
conducted to extract the surge level taking into account the surge and tide interaction. Finally, only the surge 
simulation without the tide was executed on mean sea level. With two surge levels, the effect of the tide on the 
storm surge is examined as shown in Fig. 5(a) and (b) that show a comparison of observations and calculations at 
Hondau. From the results of simulation, the effect of tide on storm surge in the case of Typhoon Frankie is very 
small, with a difference of about 3%. In the case of Typhoon Washi, the case considering the tide effect giving the 
pick surge is lower than the case without considering the tide effect with a difference of about 13%. This is due to 
Typhoon Washi landfalled at the high tide that the water deep is higher in the mean sea level. In addition, it 
indicates that the use of the conventional CD in both cases is not enough to simulate the observations, regardless of 
the consideration of the surge and tide interaction. As a result, it was found that the tidal effect is significant in the 
surge level on the coast of study area when typhoon lanfalled is at the high tide. 

 

 
(a) 

 
(b) 

Fig.5. Comparisons of the observations and calculations with and without the tide in the surge simulations of Typhoon Frankie (a) and Whashi at 
Hondau station. 
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3. Results 

To examine a critical factor to the generation of storm surge in the north coast of Vietnam, the representative 
historical typhoons of Frankie (1996) and Washi (2005) were selected. These typhoon tracks are provided in Fig. 3. 
Typhoon Frankie landfalled at the low tide while Typhoon Washi landfalled at high tide as the time profile of total 
water level observation, tide predict and storm surge at Hondau station in both typhoon cases showed in Fig. 4. 

 
(a) 

 
(b) 

Fig.4. Time serial of total water level (observation), predicted tide and storm surge at Hondau station during Typhoon Frankie (a) and Washi (b). 

 

3.1. Impact of the tide on the storm surge 

In order to investigate how the tide influences the storm surge in the study area, a series of simulations were 
conducted using SuWAT that the surge and tide interaction was taken into account to calculate the Typhoon Frankie 
and Washi surge. In the storm surge simulation, the conventional CD (Honda and Mitsuyasu22) was used to estimate 
the wind stress. First, the surge simulation was carried out with the tide. Then, only the tide simulation was 
conducted to extract the surge level taking into account the surge and tide interaction. Finally, only the surge 
simulation without the tide was executed on mean sea level. With two surge levels, the effect of the tide on the 
storm surge is examined as shown in Fig. 5(a) and (b) that show a comparison of observations and calculations at 
Hondau. From the results of simulation, the effect of tide on storm surge in the case of Typhoon Frankie is very 
small, with a difference of about 3%. In the case of Typhoon Washi, the case considering the tide effect giving the 
pick surge is lower than the case without considering the tide effect with a difference of about 13%. This is due to 
Typhoon Washi landfalled at the high tide that the water deep is higher in the mean sea level. In addition, it 
indicates that the use of the conventional CD in both cases is not enough to simulate the observations, regardless of 
the consideration of the surge and tide interaction. As a result, it was found that the tidal effect is significant in the 
surge level on the coast of study area when typhoon lanfalled is at the high tide. 

 

 
(a) 

 
(b) 

Fig.5. Comparisons of the observations and calculations with and without the tide in the surge simulations of Typhoon Frankie (a) and Whashi at 
Hondau station. 
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Fig. 8.Time serial of storm surge at Hondau station due to Typhoon Washi (2005) in six cases of space resolution. 

4. Conclusions 

The interaction of surge and tide is investigated during Typhoon Frankie (1996) and Washi (2005) landfalled at 
the north coast of Vietnam, where the maximum tidal range is up to 1.8 m. It indicates that the effect of the tide on 
the surge is ignorable for the case of Typhoon Frankie landfalled at low tide, and it is significant in the case of 
Typhoon Washi landfalled at the high tide with a difference of 13 % between the surge levels with and without the 
tide. For the surge and wave interaction, two factors of the wave dependent drag and the wave-induced radiation 
stress are focused in the surge simulation. It is shown that, the wave and surge interaction combining the wave 
dependent drag and the radiation stress contributes 30% of the total surge level and is crucial to simulating the storm 
surge. It also shows that, the surge induced by wave radiation stress is dependent on the space resolution, and the 
finest resolution is improved and in close agreement with the observation. Hence, further studies should be done on 
higher resolutions of less than 1 km grid size when planning and managing coastal facilities and structures. 
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Fig. 8.Time serial of storm surge at Hondau station due to Typhoon Washi (2005) in six cases of space resolution. 

4. Conclusions 

The interaction of surge and tide is investigated during Typhoon Frankie (1996) and Washi (2005) landfalled at 
the north coast of Vietnam, where the maximum tidal range is up to 1.8 m. It indicates that the effect of the tide on 
the surge is ignorable for the case of Typhoon Frankie landfalled at low tide, and it is significant in the case of 
Typhoon Washi landfalled at the high tide with a difference of 13 % between the surge levels with and without the 
tide. For the surge and wave interaction, two factors of the wave dependent drag and the wave-induced radiation 
stress are focused in the surge simulation. It is shown that, the wave and surge interaction combining the wave 
dependent drag and the radiation stress contributes 30% of the total surge level and is crucial to simulating the storm 
surge. It also shows that, the surge induced by wave radiation stress is dependent on the space resolution, and the 
finest resolution is improved and in close agreement with the observation. Hence, further studies should be done on 
higher resolutions of less than 1 km grid size when planning and managing coastal facilities and structures. 
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